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Abstract 

Peer-to-peer (P2P) network is increasingly becoming popular because it offers oppor¬tunities for real-time 
communication, ad-hoc collaboration and information sharing in a large-scale distributed environment. Peer-to-peer 
computing is defined as the sharing of computer resources and information through direct exchangeThe advantages 
of the P2P systems are multi-dimensional; they improve scalability by enabling direct and real-time sharing of 
services and information; enable knowledge sharing by aggregating information and resources from nodes that are 
located on geographically distributed and potentially heterogeneous platforms; and, provide high availability by 
eliminating the need for a single centralized component.  

The problem of answering large scale, ad-hoc analysis queries – e.g., aggregation queries – on these 
databases poses unique challenges. Exact solutions can be time consuming and difficult to implement given the 
distributed and dynamic nature of peer-to-peer databases. In this paper we present novel sampling-based techniques 
for approximate answering of ad-hoc aggregation queries in such databases. The data is distributed (usually in 
uneven quantities) across many peers, within each peer the data is often highly correlated, and moreover, even 
collecting a random sample of the peers is difficult to accomplish.  
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Introduction  
 Peer-to-Peer Databases: The peer-to-peer 
network model is quickly becoming the preferred 
medium for file sharing and distributing data over the 
Internet. A peer-to peer (P2P) network consists of 
numerous peer nodes that share data and resources 
with other peers on an equal basis. Unlike traditional 
client-server models, no central coordination exists in 
a P2P system, thus there is no central point of failure. 
P2P network are scalable, fault tolerant, and 
dynamic, and nodes can join and depart the network 
with ease. The most compelling applications on P2P 
systems to date have been file sharing and retrieval. 
For example, P2P systems such as Napster [25], 
Gnutella [15], KaZaA [20] and Freenet [13] are 
principally known for their file sharing capabilities, 
e.g., the sharing of songs, music, and so on. 
Furthermore, researchers have been interested in 
extending sophisticated IR techniques such as 
keyword search and relevance retrieval to P2P 
databases. 
Aggregation Queries:  

In this paper, however, we consider a 
problem on P2P systems that is different from the 
typical search and retrieval applications. As P2P  

 
systems mature beyond file sharing applications and 
start getting deployed in increasingly sophisticated e-
business and scientific environments, the vast amount 
of data within P2P databases pose a different 
challenge that has not been adequately researched 
thus far – that of how to answer aggregation queries 
on such databases. Aggregation queries have the 
potential of finding applications in decision support, 
data analysis and data mining. For example, millions 
of peers across the world may be cooperating on a 
grand experiment in astronomy, and astronomers may 
be interesting in asking decision support queries that 
require the aggregation of vast amounts of data 
covering thousands of peers.  An aggregation query 
such as the following may be introduced at any peer 
(this peer is henceforth called the sink)  
Aggregation Query : 
SELECT Agg-Op(Col) FROM T WHERE selection-
condition 

In the above query, the Agg-Op may be any 
aggregation operator such as SUM, COUNT, AVG, 
and so on; Col may be any numeric measure column 
of T, or even an expression involving multiple 
columns; and the selection condition decides which 
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tuples should be involved in the aggregation. While 
our main focus is on the above standard SQL 
aggregation operators.   
 
Approximate Query Processing  

Fortunately, it has been observed that in 
most typical data analysis and data mining 
applications, timeliness and interactivity are more 
important considerations than accuracy - thus data 
analysts are often willing to overlook small 
inaccuracies in the answer provided the answer can 
be obtained fast enough. This observation has been 
the primary driving force behind recent development 
of approximate query processing (AQP) techniques 
for aggregation queries in traditional databases and 
decision support systems [9, 3,6, 8, 1, 14, 5, 7, 23]. 
Numerous AQP techniques have been developed, the 
most popular ones based on random sampling, where 
a small random sample of the rows of the database is 
drawn, the query is executed on this small sample, 
and the results extrapolated to the whole database.  
Goal of Paper: Approximating Aggregation 
Queries in P2P Networks 

Given an aggregation query and a desired 
error bound at a sink peer, compute with “minimum 
cost” an approximate answer to this query that 
satisfied the error bound. The cost of query execution 
in traditional databases is usually a straight forward 
concept – it is either I/O cost or CPU cost, or a 
combination of the two. In fact, most AQP 
approaches simplify this concept even further, by just 
trying to minimize the number of tuples in the 
sample; thus making the assumption that the sample 
size is directly related to the cost of query execution. 
However, in P2P networks, the cost of query 
execution is a combination of several quantities, e.g., 
the number of participating peers, the bandwidth 
consumed (i.e., amount of data shipped over the 
network), the number of messages exchanged, the 
latency (the end-to-end time to propagate the query 
across multiple peers and receive replies), the I/O 
cost of accessing data from participating peers, the 
CPU cost of processing data at participating peers, 
and so on. In this paper, we shall be concerned with 
several of these cost metrics.  

Our Approach: We briefly describe the 
framework of our approach. Essentially, we abandon 
trying to pick true uniform random samples of the 
tuples, as such samples are likely to be extremely 
impractical to obtain. Instead, we consider an 
approach where we are willing to work with skewed 
samples, provided we can accurately estimate the 
skew during the sampling process. To get the 
accuracy in the query answer desired by the user, our 
skewed samples can be larger than the size of a 
corresponding uniform random sample that delivers 

the same accuracy, however, our samples are much 
more cost efficient to generate. Although we do not 
advocate any significant preprocessing, we assume 
that certain aspects of the P2P graph are known to all 
peers, such as The average degree of the nodes,  a 
good estimate of the number of peers in the system, 
certain topological characteristics of the graph 
structure, and so on. Estimating these parameters via 
preprocessing are interesting problems in their own 
right, Our approach has two major phases. In the first 
phase, we initiate a fixed-length random walk from 
the sink. This random walk should be long enough to 
ensure that the visited peers1  represent a close 
sample from the underlying stationary distribution – 
the appropriate length of such a walk is determined in 
a pre-processing step. We then retrieve certain 
information from the visited peers, such as the 
number of tuples, the aggregate of tuples (e.g., 
SUM/COUNT/AVG, etc.) that satisfy the selection 
condition, and send this information back to the sink. 
This information is then analyzed at the sink to 
determine the skewed nature of the data that is 
distributed across the network - such as the variance 
of the aggregates of the data at peers, the amount of 
correlation between tuples that exists within the same 
peers, the variance in the degrees of individual nodes 
in the P2P graph and so on. Once this data has been 
analyzed at the sink, an estimation is made on how 
much more samples are required - and in what way 
should these samples be collected - so that the 
original query can be optimally answered within the 
desired accuracy with high probability. For example, 
the first phase may recommend that the best way to 
answer this query is to visit m’ more peers, and from 
each peer, randomly sample t tuples. We mention that 
the first phase is not overly driven by heuristics – 
instead it is based on strong underlying theoretical 
principles, such as theory of random walks [14, 21, 
4], as well as statistical techniques such as cluster 
sampling, block-level sampling and cross validation 
[9, 16]. The second phase is then straightforward – a 
random walk is reinitiated and tuples collected 
according to the recommendations made by the first 
phase. Effectively, the first phase is used to “sniff” 
the network and determine an optimal-cost “query 
plan”, which is then implemented in the second 
phase. For certain aggregates, such as COUNT and 
SUM, further optimizations may be achieved by 
pushing the selections and aggregations to the peers – 
i.e., the local aggregates instead of raw samples are 
returned to the sink, which are then composed into a 
final answer. 
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The Peer-to-Peer Model 
We assume an unstructured P2P network 

represented as a graph G = (P, E), with a vertex set 
P={p1, p2, ..., pM} and an edge set E. The vertices in 
P represent the peers in the network and the edges in 
E represent the connections between the vertices in P. 
Each peer p is identified by the processor’s IP 
address and a port number (IPp, portp). The peer p is 
also characterized by the capabilities of the processor 
on which it is located, including its CPU speed pcpu, 
memory bandwidth pmem and disk space pdisk. The 
node also has a limited amount of bandwidth to the 
network, noted by pband. In unstructured P2P 
networks, a node becomes a member of the network 
by establishing a connection with at least one peer 
currently in the network. Each node maintains a small 
number of connections with its peers; the number of 
connections is typically limited by the resources at 
the peer. We denote the number of connections a peer 
is maintaining by pconn. The peers in the network 
use the Gnutella’s P2P protocol to communicate. The 
Gnutella P2P protocol supports four message types 
(Ping, Pong, Query, Query_Hit); of which the Ping 
and Pong messages are used to establish connections 
with other peers, and the Query and Query_Hit 
messages are used to search in the P2P network. 
Gnutella, however, uses a naïve Breadth First Search 
(BFS) technique in which queries are  propagated to 
all the peers in the network, and thus consumes 
excessive network and processing resources and 
results in poor performance. Our approach, on the 
other hand, uses a probabilistic search algorithm 
based on random walks. The key idea is that, each 
node forwards a query message, called walker, 
randomly to one of its adjacent peers. This technique 
is shown to improve the search efficiency and reduce 
unnecessary traffic in the P2P network 

 
Query Cost Measures 

As mentioned in the introduction, the cost of 
the execution of a query in P2P databases is more 
complicated that equivalent cost measures in 
traditional databases. The primary cost measure we 
consider is latency, which is the end-to-end time to 
propagate the query across multiple peers and receive 
replies. For the purpose of illustration, we focus in 
this section on the SUM and COUNT aggregates. For 
these specific aggregates, latency can be 
approximated by an even simpler measure: the 
number of peers that participate in the algorithm. 
This measure is appropriate for these aggregates 
primarily because the overheads of visiting peers 
dominate other incurred costs. Random Walk in 
Graphs.  

 

Random Walk in Graphs :  
In seeking a random sample of the P2P 

database, we have to overcome the sub-problem of 
how to collect a random sample of the peers 
themselves. Unrepresentative samples of peers can 
quickly skew results producing erroneous 
aggregation statistics. Sampling in a non-hierarchical  
decentralized P2P network presents several obstacles 
in obtaining near uniform random samples. This is 
because no peer (including the query sink) knows the 
IP addresses  of all other peers in the network – they 
are only aware of their immediate neighbors. If this 
were not the case, clearly the sink could locally 
generate a random subset of IP addresses from 
among all the IP addresses, and visit the appropriate 
peers directly. This problem has been recognized in 
other contexts and interesting solutions based on 
Markov chain random walks have been proposed. We 
briefly review such approaches here. A Markov chain 
random walk is a procedure that is initiated at the 
sink, and for each visited peer, the next peer to visit 
is selected with equal probability from among its 
neighbors (and itself – thus self loops are allowed). It 
is well known that, if this walk is carried out long 
enough, the eventual probability of reaching any peer 
p will reach a stationary distribution. To make this 
more precise, let P = {p1, p2, …, pM} be the entire 
set of peers, let E be the entire set of edges, and let 
the degree of a peer p be deg(p). Then the probability 
of any peer p in the stationary distribution is 

 
 
Our Algorithm 

In this section we present details of our two-
phase algorithm for approximating answering of 
aggregate queries. For the sake of illustration, we 
focus on approximating COUNT queries – it can be 
easily extended to SUM queries. The pseudo code of 
the algorithm is presented below.  
Algorithm: COUNT queries 
Predefined Values 
M : Total number of peers in network 
E : Total number of edges in network 
m : Number of peers to visit in Phase I 
j : Jump size for random walk 
t : Max #tuples to be sub-sampled per peer 
Inputs 
Q : COUNT query with selection condition 
Sink : Peer where query is initiated 
req _ : Desired max error 
Phase I 
// Perform Random Walk 
1. Curr = Sink; Hops = 1; 
2. while (Hops < j * m) { 
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3. if (Hops % j) 
4. Visit(Curr); 
5. Hops++; 
6. Curr = random adjacent peer 
7. } 
// Visit Peer 
1. Visit(Curr) { 
2. if (#tuples of Curr) <= t) { 
3. Execute Q on all tuples 
4. else 
5. Execute Q on t randomly sampled 
6. tuples 
7. } 
8.

 
 
10. Return (y(Curr), deg(Curr)) to Sink 
11. } 
// Cross-Validate at Sink 
1. Let S = {s1, s2, …, sm} be the visited peers 
2. Partition S randomly into two halves: S1 & S2    
3. Compute 

 

 
Where  

 
1. Visit m’ peers using random walk 
2. Let S’ = {s1, s2, …, sm’} be the visited peers 
Our approach in the first phase is broken up into the 
following main components. First, we perform a 
random walk on the peer-to-peer network, attempting 
to avoid skewing due to graph clustering and vertices 
of high degree. Our walk skips j nodes between each 
selection to reduce the dependency between 
consecutive selected peers. As the jump size 
increases, our method increases overall bandwidth 
requirements within the database but for most cases 
small jump sizes suffice for obtaining random 
samples. Second, we compute aggregates of the data 
at the peers and send these back to the sink. Note that 
in the previous section, we had not formally 
discussed the issue of sub-sampling at peers – this 
was primarily done to keep the previous  discussion 

simple. In reality, the local databases at some peers 
can be quite large, and aggregating them in their 
entirety may not be negligible compared to the 
overhead of visiting the peer – in other words, the 
simplistic cost model of only counting the number of 
visited peers is inappropriate. In such cases, it is 
preferable to randomly sub-sample a small portion of 
the local database, and apply the aggregation only to 
this sub-sample. Thus, the ideal approach for this 
problem is to develop a cost model that takes into 
account cost of visiting peers as well as local 
processing costs; and for such cost models, an ideal 
two-phase algorithm should determine various 
parameters in the first phase, such as how many peers 
to visit in the second phase, and how many tuples to 
sub-sample from each visited peer. In this  paper we 
taken a somewhat simpler approach, in which we fix 
a constant t (determined at preprocessing time via 
experiments), such that if a peer has at most t tuples, 
its database is aggregated in its entirety, whereas if 
the peer has more than t tuples, then t tuples are 
randomly selected and aggregated. Sub-sampling can 
be more efficient than scanning the entire local 
database – e.g., by block-level sampling in which 
only a small number of disk blocks are retrieved. If 
the data in the disk blocks are highly correlated, it 
will simply mean that the number of peers to be 
visited will increase, as determined by our cross 
validation approach at query time. Third, we estimate 
the cross-validation error of the collected sample, and 
use that to estimate the additional number of peers 
that need to be visited in the second phase. For 
improving robustness, steps 2-4 in the cross 
validation procedure can be repeated a few times and 
the average squared CVError computed. Once the 
first phase has completed, the second phase is then 
straightforward – we simply initiate a second random 
walk based on the recommendations of the first 
phase, and compute the final aggregate. Although the 
algorithm has been presented for the case of COUNT, 
it can be easily extended for SUM. Finally, we re-
emphasize that for more complex aggregates, such as 
estimation of medians, quintiles, and distinct values, 
more sophisticated algorithms are required.  

 
Conclusion 

In this paper we present adaptive sampling-
based techniques for the novel problem of 
approximate answering of ad-hoc aggregation queries 
in P2P databases. We present extensive experimental 
evaluations to demonstrate the feasibility of our 
solutions. Several intriguing open problems remain. 
Is it possible to build hybrid solutions that do some 
amount of pre-computations of samples, in addition 
to “on-the-fly” sampling such as ours? Is it possible 
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for sampling-based algorithms to perform “biased 
sampling”, i.e., focus the samples from regions of the 
database where tuples that satisfy the query are likely 
to exist? More generally, decision support and data 
analysis in P2P   databases appears to be an important 
area of research with emerging applications, and we 
hope our work will encourage further research in this 
field. 
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